RESEARCH ARTICLE

Gamma gap thresholds and HIV, hepatitis C, and monoclonal gammopathy

Gigi Y. Liu \odot^{16} *, Olive Tang 26 , Daniel J. Brotman 1 , Edgar R. Miller, III 1,2 , Alison R. Moliterno 3 , Stephen P. Juraschek 1,4

Table 2. Diagnostic performance of gamma gap for HIV using different gamma gap thresholds, N = 25,680.

Gamma gap (g/dL)	Sn, %	Sp, %	LR +	LR -	Overall AUC (95% CI)		
≥ 2.5	94.8	10.5	1.1	0.5	0.80 (95% CI: 0.75, 0.85)		
≥ 3.0	84.4	51.9	1.8	0.3			
≥ 3.5	59.3	88.1	5.0	0.5			
≥ 4.0	39.3	98.4	24.2	0.6			
≥ 4.5	19.3	99.6	54.1	0.8			
≥ 5.0	10.4	99.9	139.4	0.9			
≥ 5.5	4.4	100.0	283.9	1.0			

Table 3. Diagnostic performance of gamma gap for HCV using different gamma gap threshold, N = 45,134.

Gamma gap (g/dL)	Sn, %	Sp, %	LR +	LR -	Overall AUC (95% CI)		
≥ 2.5	97.8	9.9	1.1	0.2	0.74 (95% CI: 0.72, 0.76)		
≥ 3.0	80.8	50.2	1.6	0.4			
≥ 3.5	44.5	86.9	3.4	0.6			
≥ 4.0	19.0	97.8	8.5	0.8			
≥ 4.5	7.0	99.5	13.7	0.9			
≥ 5.0	2.6	99.8	16.3	1.0			
≥ 5.5	1.1	99.9	13.9	1.0			

Table 4. Diagnostic performance of gamma gap for MGUS using different gamma gap thresholds, N = 6,118.

Gamma gap (g/dL)	Sn, %	Sp, %	LR +	LR -	Overall AUC (95% CI)		
≥ 2.5	97.6	6.4	1.0	0.4	0.64 (95% CI: 0.60, 0.69)		
≥ 3.0	75.7	39.9	1.3	0.6			
≥ 3.5	39.1	80.1	2.0	0.8			
≥ 4.0	15.4	95.4	3.4	0.9			
≥ 4.5	7.7	98.9	6.9	0.9			
≥ 5.0	5.3	99.7	16.7	0.9			
≥ 5.5	3.0	99.8	17.6	1.0			

Conclusions:

- Gamma gap is not a sufficient screening tool (you'd want high sensitivity for a screen)
- An elevated gamma gap warrants further testing for HCV and HIV but not MGUS
- Many patients with HIV and HCV did not have an elevated gamma gap
- HIV and HCV stage of treatment influence the gamma gap

Limitations:

- This study was performed in defined patient populations, so patients with comorbid conditions were not assessed and there was no assessment of a mixed population (HIV, HCV, and MGUS)
- These were outpatients and none had autoimmune conditions, chronic inflammatory conditions, or chronic infections
- When the gamma gap was test further in this study

HIV: age > 18HCV: age > 6MGUS: age > 50

Original Article | Published: 30 July 2008

A Clinical Decision Rule to Aid Ordering of Serum and Urine Protein Electrophoresis for Case-Finding of Paraproteins in Hospitalized Inpatients

Ammarin Thakkinstian PhD, Huy Tran MB BS, FRACP, Glenn Reeves MB BS, FRACP, Stuart Murch B Med & John Attia PhD, FRCPC, FRACP ⊡

Journal of General Internal Medicine 23, 1688–1692 (2008) | Cite this article

For MGUS use the following equation:

$$Logit \left[\frac{SPE/UPE^+}{SPE/UPE^-} \right] = -4.4 + 1.5 x globulin + 1.1 x age + 0.6 x hgb + 0.4 x sex + .2 x gfr$$

Variables	OR (95% CI)	Scores	
Globulin, g/	I		
>41	4.5 (3.8, 5.4)	5	
≤41		0	
Age, years			
≥60	2.9 (2.4, 3.7)	3	1.00 -
<60		0	0.90 -
Hemoglobin	, g/1		0.80 -
<121	1.9 (1.5, 2.3)	2	0.70 -
≥121		0	0.70 - 0.60 - >=8
Sex			Sensitivity 0.50 - S=10
Male	1.6 (1.4, 1.9)	2	0.40
Female		0	0.30 -
eGFR, m1/m	in/1.73 m ²		0.20 - >=12
<60	1.3 (1.1, 1.5)	1	0.10
≥60		0	0.00 -
Total scores		0-13	0.00 0.25 0.50 0.75 1.00 1 - Specificity

Score (prob. of para-protein)	Derivation set				Validation set				
	SPE/UPE		LR ⁺ (95% CI)	PPV (%)	SPE/UPE		LR ⁺ (95% CI)	PPV(%)	
	Positive	Negative			Positive	Negative			
0-5(Low)	207	6,537	1.0	3.1	91	2,797	1.0	3.1	
6-10(Med)	303	2,205	2.5(2.4-2.7)	12.1	129	941	2.5(2.3-2.7)	12.1	
≥11(High)	294	506	6.7(5.9-7.6)	36.8	127	221	6.6(5.4-79)	36.5	