Part 1. CNS - Glial Neoplasms

Giselle López, MD, MPH @neurogiselle

Tumor Types (Broad Overview)

Can characterize tumors by the <u>neuro cells</u> which they resemble/are derived from.

• Glial cells

- Astrocytomas
- Oligodendrogliomas
- Ependymomas
- Neurons
 - Medulloblastomas
 - Neurocytomas
- Mixed Glial and Neuronal
 - Gangliogliomas
 - Glioneurocytic

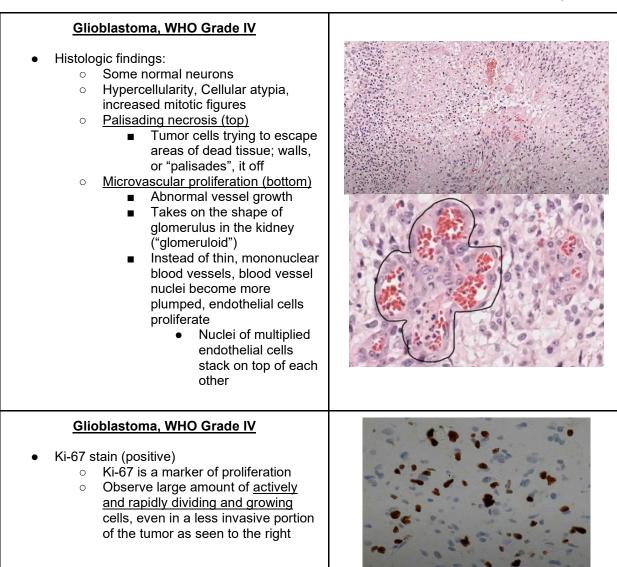
• Coverings of the Nervous System

- Meningiomas
- Schwannomas
- Neurofibromas

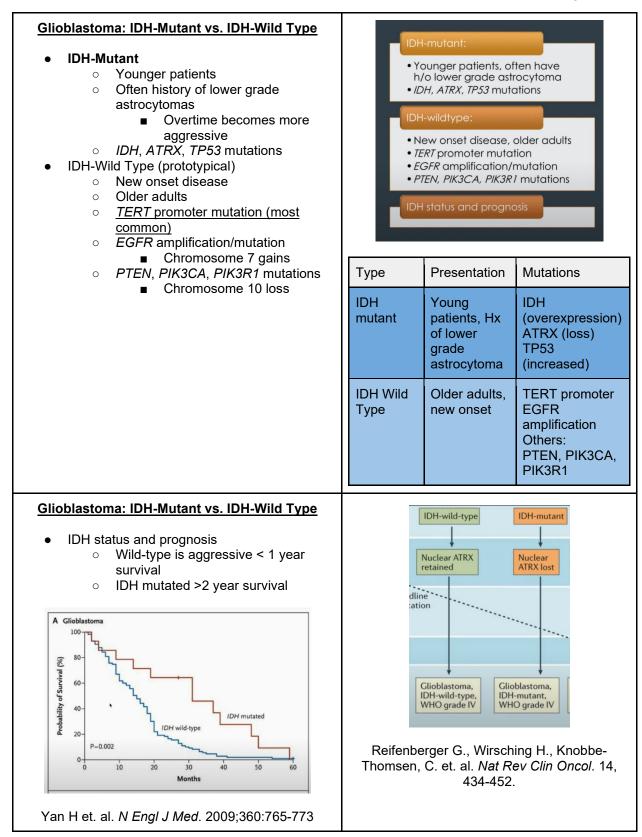
Peripheral to Central (Broad Overview)

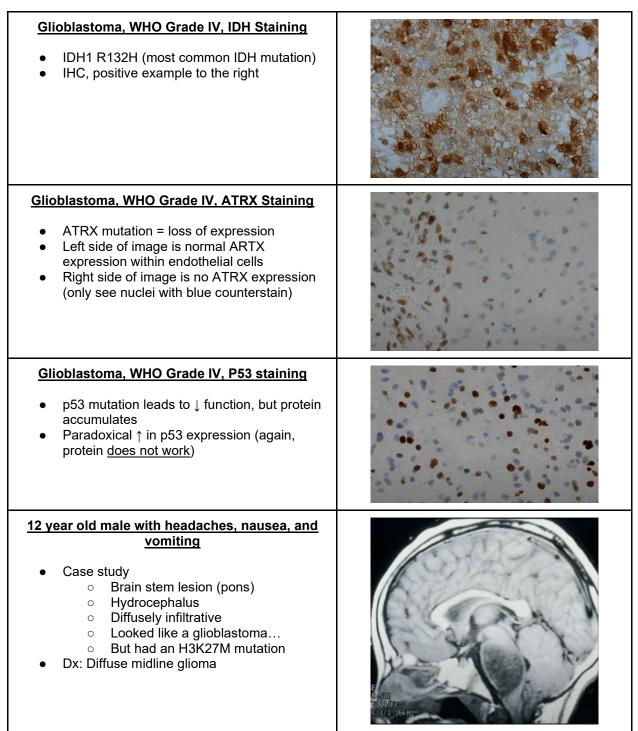
Can also organize tumors from peripheral (nervous system) to central (nervous system).

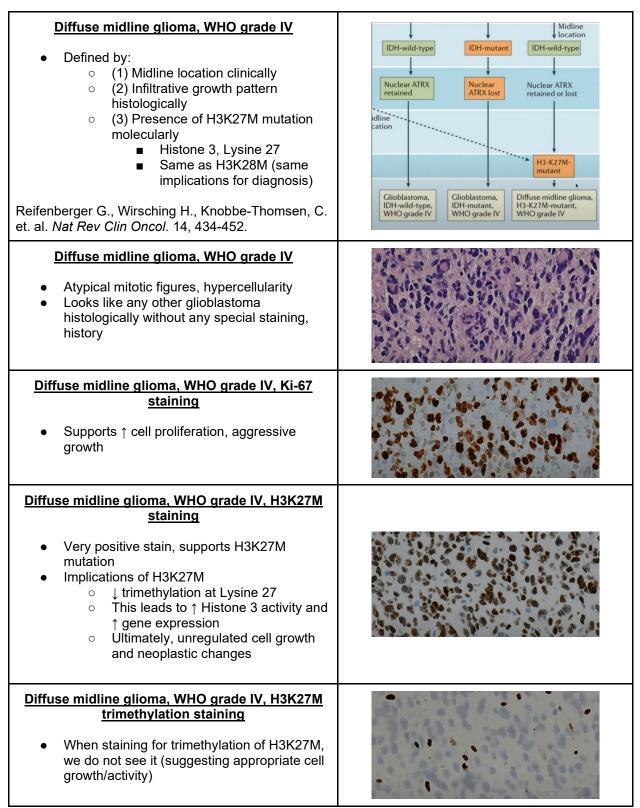
- Peripheral Nerve and Nerve Root Tumors
 - Neurofibroma, Schwannoma
- Spinal Cord
 - Extrinsic Meningioma
 - Intrinsic Glial
 - Astrocytoma, Ependymoma
- Brain
 - Extrinsic Meningioma
 - Intrinsic Glial Neuronal Tumors (see above)


WHO Grading

Based not on tumor type, but on survival.

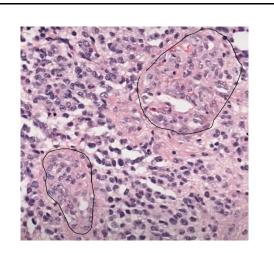

- GRADE I > 10 year survival if untreated
- GRADE II 5-10 year
- GRADE III 3-5 year
- GRADE IV <3 year (aggressive, Glioblastoma)

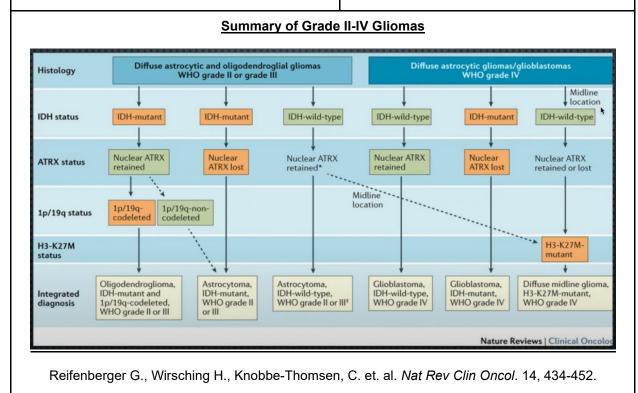

Casey P. Schukow, DO @CaseyPSchukow Meredith Herman @MeredithKHerman


Gliomas • Major classifications • Astrocytomas • Oligodendrogliomas • Ependymomas	Most common type of primary brain tumor
 Glioblastoma, WHO Grade IV Epidemiology: about 18,000/year in US Mostly middle-aged adults Most common primary brain and the most malignant Typically occurs in adults >45 years old Also in brainstem of children, infants Sites: Frontal and Temporal lobes Cerebral hemispheres, white matter Imaging: large irregular, contrast-enhancing mass Surrounding edema, cavitation Prognosis: death <1 year Gross findings: Infiltrative, poorly circumscribed, necrotic Crosses the corpus callosum "Butterfly glioma" 	

Surgical Neuropathology Page **4** of 20

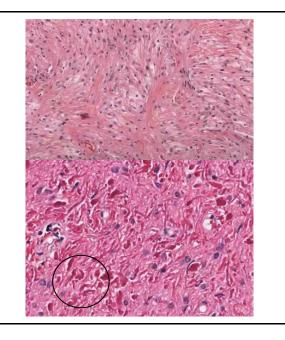
Surgical Neuropathology Page **7** of 20


Anaplastic astrocytoma, IDH-mutant, WHO Grade III • Molecular features; IDH, ATRX, and TP53 mutations • Typically presents in fifth decade of life • ↑ nuclear atypia/cellularity, proliferation • Unlike glioblastomas, they do not have palisading necrosis and microvascular proliferation on histology • Classic feature: domesticities • Eccentric nuclei with abundant eosinophilic cytoplasm (circled) • Prognosis: death 2-5 years	
 Anaplastic astrocytoma, IDH-mutant, WHO Grade III IHC staining, Gliofibrilliary acidic protein (GFAP) + Positive in majority of glial neoplasms Highlights domesticites (example circled) 	
Anaplastic astrocytoma, IDH-mutant, WHO Grade III • IHC staining, IDH1 R132H • Positive (example circled)	
 Anaplastic astrocytoma, IDH-mutant, WHO Grade III IHC staining, ATRX Tumor cells have lost their ATRX Only stain blue with counterstain (example circled) 	

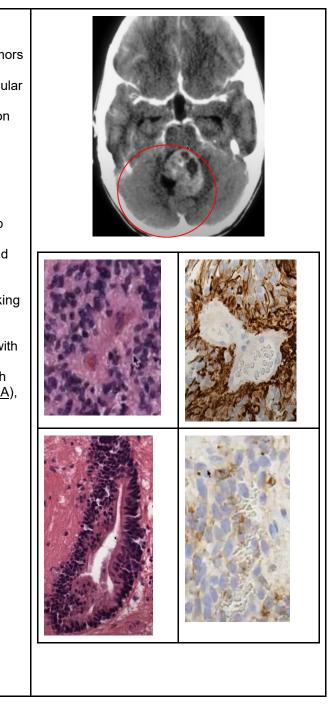

Surgical Neuropathology Page **8** of 20

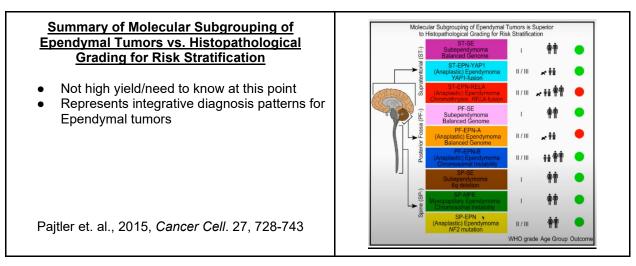
Anaplastic astrocytoma, IDH-mutant, WHO Grade II • Epidemiology: 0.6/100,000; young adults • Molecular features; IDH, ATRX, and TP53 mutations • Symptoms: seizure, headache, focal neurologic deficits (FNDs) • Weakness, numbness • Imaging/Gross: III-defined growth pattern • Survival 5-10 years • Histology • Mild to moderate ↑ cellularity • Mild nuclear pleomorphism • Fibrillary background do to astrocyte cell processes • Indistinct transition from neoplastic to reactive	
Oligodendroglioma, IDH-mutant and 1p/19q co- deletion, WHO Grade II • Usually affect the cerebral hemispheres of adults • Symptoms: seizures for years prior to diagnosis • Histology: • Fried egg appearance (perinuclear cytoplasmic clearing with round, regular nuclei) - top image • May not be present in a frozen section during surgery because this is actually an artifact of processing (paraffin embedded tissues) • Microcalcifications, microcysts - middle image • Chicken-wire vessels - bottom image • Really fine capillaries that often branch at different angles • Examples highlighted • Molecular features: <i>IDH</i> mutation, <i>TERT</i> promoter mutation, <u>chromosome arms 1p/19q co-deletion</u> (must be present to make diagnosis)	

Oligodendroglioma, IDH-mutant and 1p/19q codeletion, WHO Grade III


- Prognosis: median survival 11 years
- Histology: ↑ cellular and pleomorphism, microvascular proliferation, necrosis, or >5 mitoses/10 high power fields
 - Microvascular proliferation (circled) and necrosis are <u>not</u> specific for glioblastomas
 - Based on clinical and histologic context
- Molecular features: *IDH* mutation, *TERT* promoter mutation, chromosome arms 1p/19q co-deletion

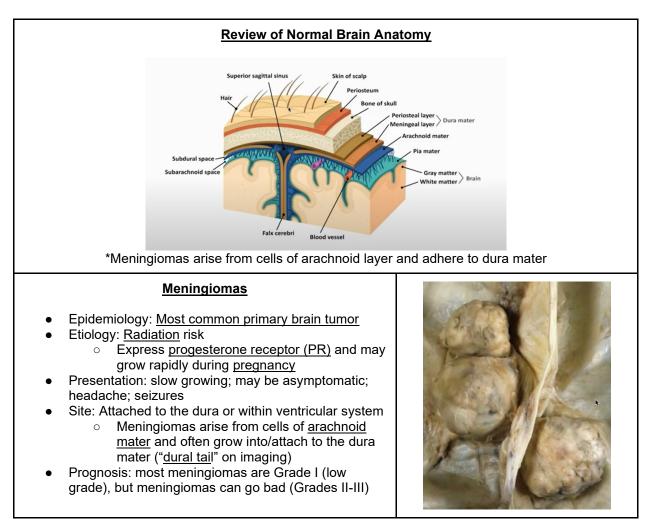
Pilocytic Astrocytoma, WHO Grade I

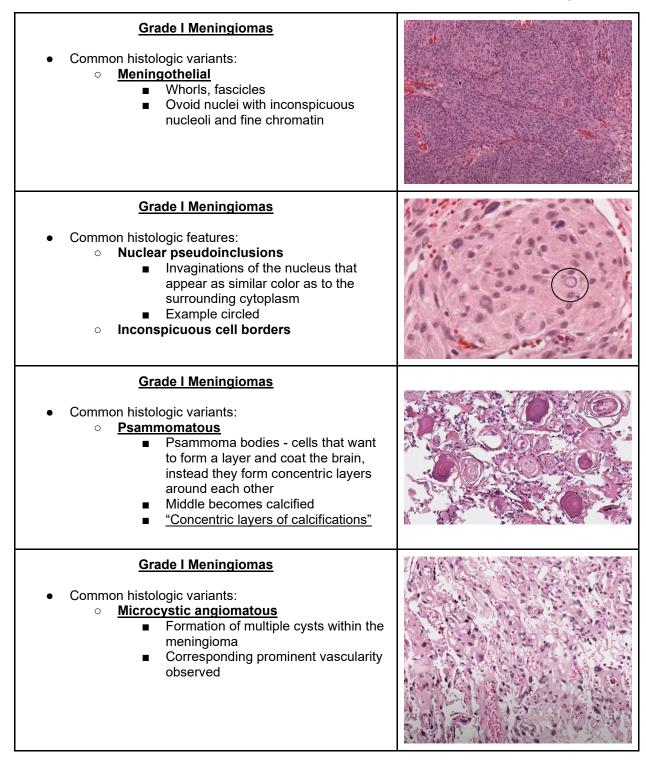

- Relatively "benign"
- Population: children and young adults
- Location: <u>Cerebellum</u> >> Floor/Walls of 3rd Ventricle, optic nerves, cerebral hemispheres
- Molecular; BRAF:KIAA fusions (no defining mutations however, this is the most common)
 - MAPK pathway alterations
- Histology:
 - "Hair-like" neuronal process top image
 - Rosenthal fibers bottom image
 - Eosinophilic globules (example circled)

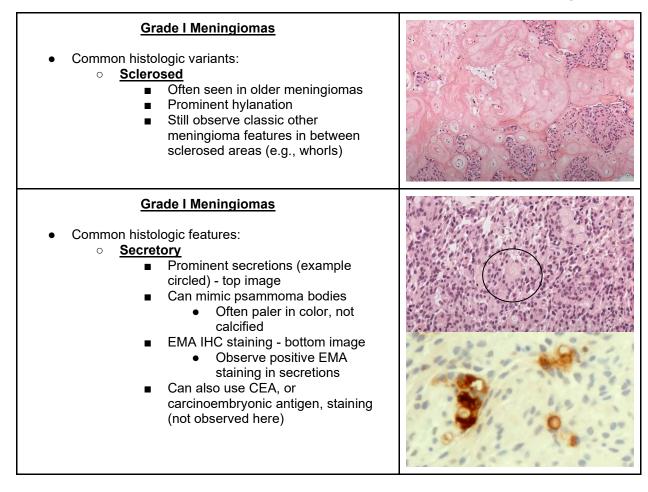


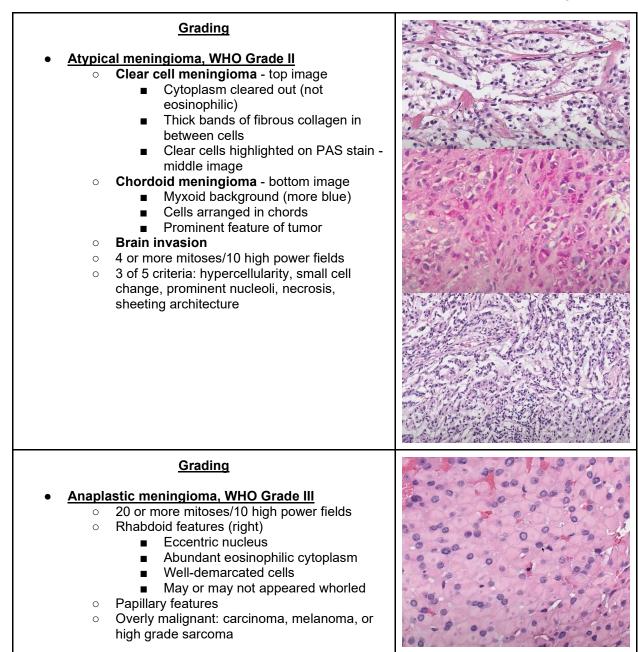
Surgical Neuropathology Page **11** of 20

Ependymoma, WHO Grade I


- Epidemiology: 5-10% of primary brain tumors in children; in adults, a/w NF2
- Sites: arise next to the ependymal ventricular system
- Sx: headaches, n/v due to CSF obstruction (hydrocephalus)
- Prognosis: dependent on location and molecular features
 - Example to the right is in 4th ventricle
- Histology (see chart)
 - <u>Perivascular pseudorosettes</u> top left
 - Tumor cells collect around blood vessels and send down their processes towards the vessels, making a "pseudorosette"
 - <u>GFAP staining</u> top right
 - May try to form <u>"new ventricles</u>" with "true lumen" - bottom left
 - Intracytoplasmic lumens filled with <u>epithelial membrane antigen (EMA)</u>, "perinuclear dot-like positivity" bottom right


Part 2. Meningioma


Giselle López, MD, MPH @neurogiselle



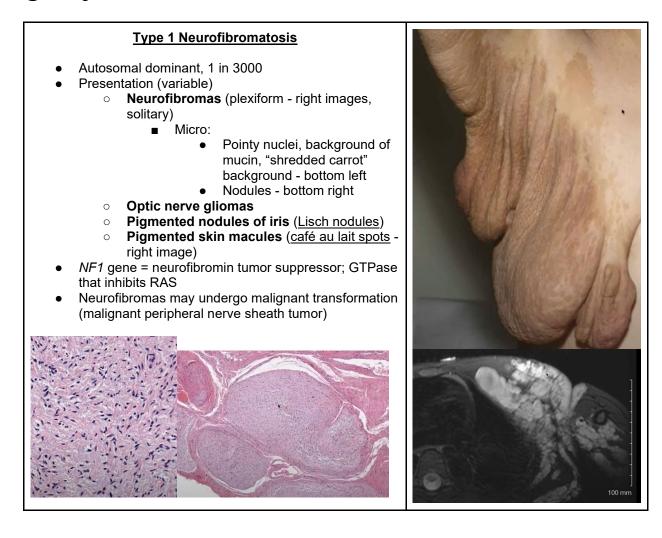
Casey P. Schukow, DO @CaseyPSchukow Meredith Herman @MeredithKHerman

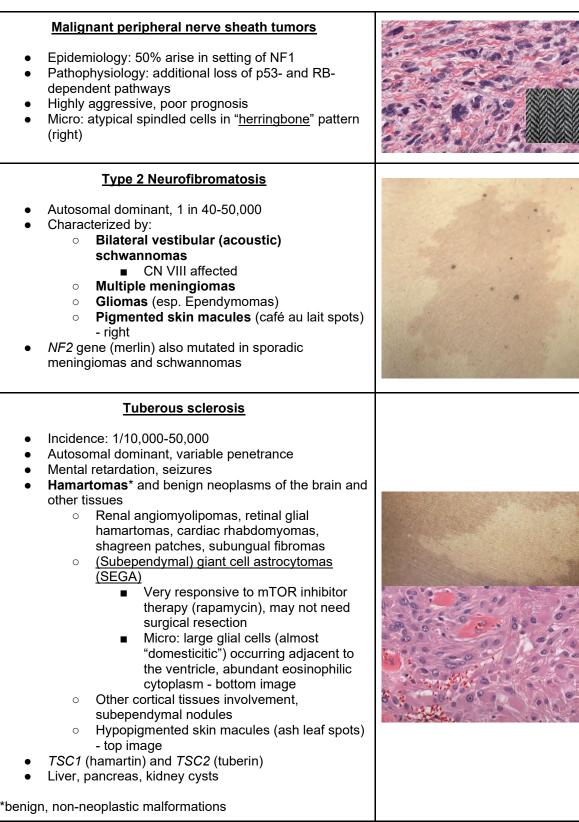
Surgical Neuropathology Page **13** of 20

Part 3. Rare Glial Neoplasms

Casey P. Schukow, DO @CaseyPSchukow Meredith Herman @MeredithKHerman

Giselle López, MD, MPH @neurogiselle

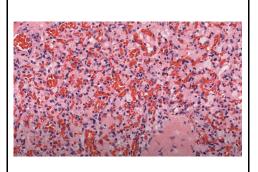

Ganglioglioma	
 Epidemiology: Rare, <1% intracranial neoplasms; <30 years old Presentation: Seizures Imaging: <u>Cystic, Temporal lobe lesion</u> Micro: Mixture of mature neurons and glial tissue Classically nodular - top image Bi-nucleated appearing neurons, neurons crowded against each other (circled), background of additional glial tissue - bottom image Prognosis: Slow growing unless glial component develops anaplasia ("anaplastic glioglioma") Molecular: BRAF V600E (most common) 	
 Dysembryoplastic neuroepithelial tumor Epidemiology: Rare (≈100 cases); teenagers/young 	
 adults Presentation: Incidental finding or epilepsy Imaging: Nodular cortical lesion, Temporal or Frontal cortex Micro: Extracellular mucin; small round cells, similar to oligodendrocytes, arranged in clusters <u>"Neurons floating in pools of mucin</u>" (example circled) Prognosis: Good if surgically resected Molecular: BRAF V600E (most common) 	
 Myxopapillary ependymoma Site: Filum terminale of spinal cord Micro: Papillary and myxoid background (top image) Ependymoma cells are very round and prominent On H&E (bottom image), can see abundant pools of mucin surrounded by ependymoma cells Rx: Surgery (good prognosis if complete surgical resection achieved) 	


Subependymoma

- Epidemiology: Middle-aged to elderly adults
- Site: 4th ventricle (50-60%), lateral ventricle (30-40%), spinal cord
- Presentation: Hydrocephalus or asymptomatic
- May calcify
- Micro: hypocellularity, arranged in vague nodules (right)
- Rx: Resection if symptomatic

Part 4. Genetic Brain Tumors

Giselle López, MD, MPH @neurogiselle

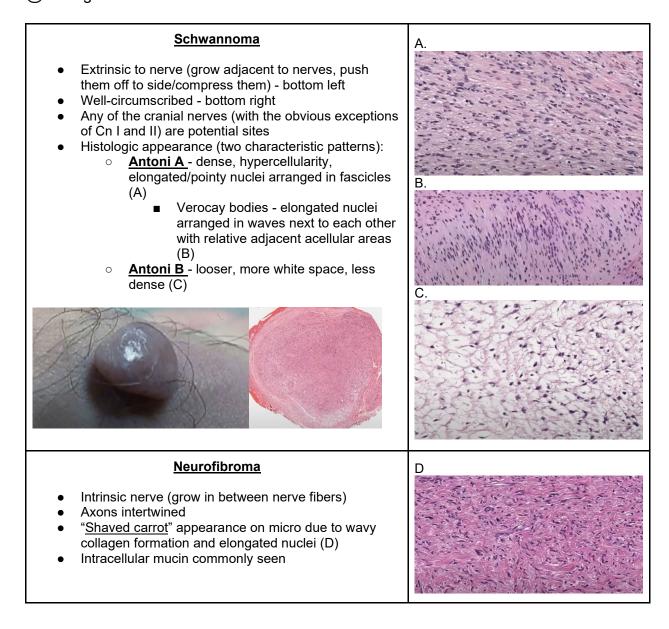


Von Hippel-Lindau disease

- Autosomal dominant, 1 in 30-40,000
- Characterized by:
 - Hemangioblastoma of cerebellum, brain stem/spinal cord
 - Cysts of liver, pancreas, kidney
 - Renal cell carcinoma
- Pathophysiology: pVHL downregulates HIF-1a wich regulates VEGF, erythropoietin (EPO)

<u>Hemangioblastoma</u>

- Epidemiology: M>F, 20-40 years
- 25% in VHL patients/75% sporadic
- Sites: Cerebellum, retina, spinal cord
- Micro: vascular. ↑ blood vessel/capillary formation, vacuolated-appearing stromal cells (right)
- Symptoms: due to increased ICP, due to erythrocytosis 2/2 ↑ EPO
- MRI: Cystic lesion with enhancement



Other Tumor syndromes

- Li Fraumeni, TP53/17p, astrocytomas, bone and soft tissue sarcoma
- Turcot, FAP/5q, medulloblastoma and GBM, GI polyps, colorectal cancer
- Gorlin, PTCH/9q, <u>desmoplastic medulloblastoma</u>, nevoid basal cell carcinoma, odontogenic keratocysts

Part 5. Nerve Sheath Tumors

Giselle López, MD, MPH @neurogiselle

